115 research outputs found

    Effective temperature and glassy dynamics of active matter

    Full text link
    A systematic expansion of the many-body master equation for active matter, in which motors power configurational changes as in the cytoskeleton, is shown to yield a description of the steady state and responses in terms of an effective temperature. The effective temperature depends on the susceptibility of the motors and a Peclet number which measures their strength relative to thermal Brownian diffusion. The analytic prediction is shown to agree with previous numerical simulations and experiments. The mapping also establishes a description of aging in active matter that is also kinetically jammed.Comment: 2 figure

    Tensegrity and Motor-Driven Effective Interactions in a Model Cytoskeleton

    Get PDF
    Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.Comment: 38 pages, 13 figure

    Immune cells use active tugging forces to distinguish affinity and accelerate evolution

    Full text link
    Cells are known to exert forces to sense their physical surroundings for guidance of motion and fate decisions. Here, we propose that cells might do mechanical work to drive their own evolution, taking inspiration from the adaptive immune system. Growing evidence indicates that immune B cells - capable of rapid Darwinian evolution - use cytoskeletal forces to actively extract antigen from other cells' surface. To elucidate the evolutionary significance of force usage, we develop a theory of tug-of-war antigen extraction that maps receptor binding characteristics to clonal reproductive fitness, revealing physical determinants of selection strength. This framework unifies mechanosensing and affinity-discrimination capabilities of evolving cells: pulling against stiff antigen tethers enhances discrimination stringency at the expense of absolute extraction. As a consequence, active force usage can accelerate adaptation but may also cause extinction of cell populations, resulting in an optimal range of pulling strength that matches molecular rupture forces observed in cells. Our work suggests that nonequilibrium, physical extraction of environmental signals can make biological systems more evolvable at a moderate energy cost.Comment: 14 pages, 6 figure

    Entanglement tongue and quantum synchronization of disordered oscillators

    Full text link
    We study the synchronization of dissipatively-coupled van der Pol oscillators in the quantum limit, when each oscillator is near its quantum ground state. Two quantum oscillators with different frequencies exhibit an entanglement tongue, which is the quantum analogue of an Arnold tongue. It means that the oscillators are entangled in steady state when the coupling strength is greater than a critical value, and the critical coupling increases with detuning. An ensemble of many oscillators with random frequencies still exhibits a synchronization phase transition in the quantum limit, and we analytically calculate how the critical coupling depends on the frequency disorder. Our results can be experimentally observed with trapped ions or neutral atoms.Comment: 11 pages, 5 figure
    • …
    corecore